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1. INTRODUCTION

In this section we examine the properties of a map Mp ∶ ℤ ↦
∏

n∈ℕℤ∕pnℤ
with the aim of motivating the construction of the p-adic integers ℤp. The partic-
ular example ofMp is original to this work; the maps mp,n and the relation on the
sequences of imMp which they describe are taken from Serre [3]. In this section
and others, proofs not given citations are original to this paper, though may appear
elsewhere in texts not known to the author.

Recall that with respect to a modulus n ∈ ℕ, every integer a ∈ ℤ is associated
with a residue class ā ∈ ℤ∕nℤ denoted by a (mod n). We use the notation a mod n
to denote the least nonnegative residue of a (mod n), which is the unique b ∈ ā
such that 0 ≤ b < n. More generally, we write [ā] to denote the least nonnegative
element of an equivalency class ā of integers.

Suppose we are interested in knowing all residues of a particular a ∈ ℤ in moduli
n ∈ ℕ. By the Chinese Remainder Theorem, it suffices to know the residues of a
in each prime power p�. We can represent this information by forming infinite
sequences of the residues of a in the powers of each prime p, which we denote
byMp(a) = (a (mod p), a (mod p2), a (mod p3),…). A family of maps which are
useful in characterizing imMp is defined below.

Definition 1.1. Define the modular surjection with respect to a prime p as the map
mp,n ∶ ℤ∕pn+1ℤ → ℤ∕pnℤ given by mp,n(a (mod p)n+1) = a (mod p)n. Each
mp,n is a homomorphism on the additive and multiplicative groups of ℤ∕pn+1ℤ
since for any elements ā, b̄ in the domain with coset representatives a and b ∈ ℤ,
mp,n(ā+ b̄) = mp,n(a+ b (mod n+ 1)) = a+ b (mod n) = a (mod n) + b (mod n) =
mp,n(ā) + mp,n(b̄). Likewise, mp,n(āb̄) = mp,n(ab (mod n + 1)) = ab (mod n) =
(a (mod n))(b (mod n)) = mp,n(ā)mp,n(b̄). Therefore, each mp,n is a ring homomor-
phism. For any element ā ∈ ℤ∕pnℤ, ā = mp,n([ā] (mod pn+1)), somp,n is surjective.

Proposition 1.2. The image of Mp ∶ ℤ →
∏

n∈ℕℤ∕pnℤ is exactly the set of
sequences x which satisfy these properties.
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(i) All adjacent terms xn and xn+1 satisfy mp,n(xn+1) = xn.
(ii) There is some k ∈ ℕ such that for all integers n ≥ k, [xn] = [xk].

Proof. Let x = Mp(a) denote an arbitrary element of the image of Mp, where
a ∈ ℤ is an element of the preimage of x. For every power pn of p which is greater
than a, a mod pn = a, so x satisfies (ii). Since every component a (mod pn+1) of
x is immediately preceded by the component a (mod pn) and mp,n(a (mod pn+1)) =
a (mod pn), x satisfies (i).

Now let x =
(

xn
)

n∈ℕ ∈
∏

n∈ℕℤ∕pnℤ denote a sequence for which (i) and (ii)
both hold. By (ii), there is some k ∈ ℕ such that for all n ≥ k, [mn] = [mk]; let
us denote by k the least index for which this property holds. We claim that x is the
image inMp of [mk], which we write as y =Mp([mk]) =

(

yn
)

n∈ℕ. We immediately
know that xn = yn = [mk] (mod pk) for all n ≥ k by our choice of k. Now note
that since adjacent terms are related by the ring homomorphism mp,n, each term of
a sequence satisfying (i) completely determines all terms which precede it. Since
xk = yk, xn = yn for all n < k as well. Therefore, because we have shown that
xn = yn for all indices n ≥ k and all indices n < k, we have shown that x = y =
Mp([mk]). �

While property (i) describes an important structural feature of these infinite mod-
ular sequences, property (ii) is an artifact of our ability to always find a prime power
of p which is greater than the unique integer in the preimage of the sequence. The
rest of this paper examines the nature of the mathematical objects which satisfy (i)
but not necessarily (ii).

The set of such sequences actually form the integral domainℤp of p-adic integers,
whose field of fractions is denoted by ℚp. In §2 we construct ℤp as a inverse limit,
and show that its field of fractions ℚp is well defined. In §3 we further investigate
the multiplicative group ℚ×

p , and discuss its isomorphism to more familiar groups.

2. CONSTRUCTION OF ℤp AND ℚp

We define an inverse system of a ring and an inverse limit below, and prove that
the inverse limit construction defines a ring. We then proceed to define the p-adic
integersℤp as the inverse limit of the family

(

ℤ∕pkℤ
)

k∈ℕ of rings whose orders are
prime powers of p. This construction of the p-adics is heavily modeled on that of
Serre [3, p. 11], which likewise constructs the p-adic integers as an inverse limit by
a similar formalism and then defines the fieldℚp as a field of fractions over ℤp. All
concepts and proofs from this section are from Serre [3], though often elaborated or
simplified for expository purposes, unless indicated otherwise. The proof that ℤp
is an integral domain, however, bears little resemblance to Serre’s [3, p. 12] proof,
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which sacrifices some directness in order to introduce notation and ideas which are
important to his later discussion.

Definition 2.1. A inverse system consists of an infinite sequence
(

An
)

n∈ℕ of rings
with unity and of a family

(

'n ∶ An+1 → An
)

n∈ℕ of onto ring homomorphisms.

Definition 2.2. Given a inverse system
((

An
)

n∈ℕ,
(

'n ∶ An+1 → An
)

n∈ℕ
)

,
the inverse limit lim

←←←←←←←←←←←n

(

An, 'n
)

is the set of all (a1, a2,… , ak,…) ∈
∏

n∈ℕAn
in the infinite direct product of the rings of the system whose adjacent items aj
and aj+1 are related by the associated homomorphism 'j of the system. Formally,
lim
←←←←←←←←←←←n

(

An, 'n
)

∶=
{

(aj)j∈ℕ ∈
∏

n∈ℕAn ∶ aj = 'j(aj+1) for all j ∈ ℕ
}

.

We now prove that the inverse limit defines a ring (omitted from Serre [3]).

Theorem 2.3. Any inverse limit lim
←←←←←←←←←←←n

(

An, 'n
)

is a subring with unity of
∏

n∈ℕAn.

Proof. Since
∏

n∈ℕAn is a ring and lim
←←←←←←←←←←←n

(

An, 'n
)

⊆
∏

n∈ℕAn is a subset of this
ring, it remains to be shown that lim

←←←←←←←←←←←n

(

An, 'n
)

is closed under multiplication and
subtraction. Consider first the difference x − y =

(

xn − yn
)

n∈ℕ of two elements
x = (xn)n∈ℕ and y = (yn)n∈ℕ in lim

←←←←←←←←←←←n

(

An, 'n
)

. For any j ∈ ℕ, 'j(xj+1 − yj+1) =
'j(xj+1) − 'j(yj+1) = xj − yj , so x − y ∈ lim

←←←←←←←←←←←n

(

An, 'n
)

and lim
←←←←←←←←←←←n

(

An, 'n
)

is
closed under subtraction. Now consider the product xy = (xnyn)n∈ℕ. For any
j ∈ ℕ, 'j(xj+1yj+1) = 'j(xj+1)'j(yj+1) = xjyj , so xy ∈ lim

←←←←←←←←←←←n

(

An, 'n
)

, and
lim
←←←←←←←←←←←n

(

An, 'n
)

is closed under multiplication. Let U ∈
∏

n∈ℕAn denote the multi-
plicative identity of

∏

n∈ℕAn, whose nth term is given by the multiplicative iden-
tity of An. Since each 'n is a surjective ring homomorphisms, 'n(1n+1) = 1n for
all n ∈ ℕ, where 1n+1 is the unity in An+1 and 1n is the unity in An. Therefore,
U ∈ lim

←←←←←←←←←←←n

(

An, 'n
)

. Because we have shown that lim
←←←←←←←←←←←n

(

An, 'n
)

is closed under
subtraction and multiplication and contains the unity U , we have proven that it is a
subring with unity of

∏

n∈ℕAn. �

We now define the ring of p-adic integers.

Definition 2.4. For a given prime p, the ring ℤp of p-adic integers is the inverse
limit of the system defined by the family

(

ℤ∕pnℤ
)

n∈ℕ of rings with power of p
orders and by the family

(

mp,n
)

n∈ℕ of modular surjections.

Remark 2.5. Note that p-adic multiplication is defined componentwise and each
component of a p-adic integer is an element of a commutative ring ℤ∕pnℤ. Con-
sequently, multiplication over ℤp is commutative. Moreover, x ∈ ℤp is the zero
element of ℤp just in case [xn] = 0 for all components xn of x.
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Proposition 2.6. The image imMp of the mapping discussed in §1 constitutes a
subring of ℤp.

Proof. Since all sequences of imMp satisfy property (i) of Proposition 1.2, imMp ⊂
ℤp, and sinceMp(1) is a multiplicative identity in Zp, imMp contains the unity of
ℤp. Now consider the difference and product of two arbitrary x =

(

xn
)

n∈ℕ and
nonzero y =

(

yn
)

n∈ℕ in the image imMp. By Proposition 1.2, there is some k ∈ ℕ
such that xj = xk for all j > k and some l ∈ ℕ such that yj = yl for all j > l.
Without loss of generality, let us assume that l < k. Then for any j ∈ ℕ greater than
k, the jth component of x− y is given by xj − yj = xk − yk and the jth component
of xy is given by xjyj = xkyk. Therefore, since x−y and xy each define an infinite
sequence satisfying properties (i) and (ii) in Proposition 1.1, they are each elements
of the image imMp which is closed under subtraction and multiplication. �

In order to define the field of fractions ℚp, it must first be shown that ℤp is an
integral domain.

Proposition 2.7. For any x =
(

xn
)

n∈ℕ ∈ ℤp, if [xk] = 0 for some component xk
of x, then [xk−j] = 0 for all previous components xk−j with j ∈ ℕ and j < k.

Proof. Since xk−1 = mp,k−1(xk) = mp,k−1(0 (mod pk)) = 0 (mod pk−1), [xk−1] =
0. By the principle of mathematical induction, this entails that [xk−j] = 0 for all
terms xk−j whenever [xk] = 0, as we can induct on j ∈ ℕ so long as k− j > 0. �

Corollary 2.8. If an element x ∈ ℤp is nonzero, then there exists some k ∈ ℕ such
that [xn] ≠ 0 for all n ≥ k.

Proof. Suppose (for contradiction) that x ∈ ℤp is nonzero and there existed no such
k. Then for an arbitrary component xn of x, there is some component xj with j > n
such that [xj] = 0. By Prop. 2.7, this entails that [xn] = 0. So we have shown that
x =

(

0̄
)

n∈ℕ, which contradicts the hypothesis that x is nonzero. �

Corollary 2.9. ℤp is an integral domain.

Proof. Suppose xy = 0 for some x =
(

xn
)

n∈ℕ and nonzero y =
(

yn
)

n∈ℕ. By Cor.
2.8 above, there is some k ∈ ℕ such that yn is nonzero for all indices n ≥ k. We
proceed to prove by contradiction that [xn] = 0 for any arbitrary component xn of
x such that n > k.

Suppose [xn] ≠ 0. Then since the (n + k − 1)th component of xy is 0, pn+k−1

must divide [xnyn], which means [xn] = pe and [yn] = pf for nonnegative integer
exponents e, f whose sum is divisible by n + k − 1. But if e ≥ k, then since
yk = [yn] (mod pk), [yk] = 0 which is a contradiction. So e < k, which means
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f ≥ (n + k − 1) − (k − 1) and f ≥ n. Therefore, pn divides [xn+k−1] and [xn] =
[xn+k−1] (mod pn) = 0 which is a contradiction.

Since arbitrarily large components of x are zero, by Prop. 2.7 x is zero. There-
fore, since xy = 0 implies that either x or y is zero for arbitrary x, y ∈ ℤp, ℤp is an
integral domain. �

Because ℤp is an integral domain, the field of fractions over ℤp which is written
as ℚp is well-defined. In §3 below we examine its multiplicative group ℚ×

p .

3. THE MULTIPLICATIVE GROUP ℚ×
p

Following Serre [3, p. 12], we claim that every nonzero element of ℚp is of the
form peu for some e ∈ ℤ and u ∈ ℤp. We write peq for e ∈ ℤ and q ∈ ℚp to
denote the result of the group action of ℤ on ℚp defined below. Note however that
our exposition diverges from that of Serre, who does not discuss group actions.

Proposition 3.1. The additive group of integers ℤ acts on ℚp by the map
(

e −

f, x
y

)

↦

(

pean (mod pn)
)

n∈ℕ
(

pf bn (mod pn)
)

n∈ℕ

, where each an and bn are coset representatives of the

nth coordinates of x and y respectively and e, f ∈ ℕ.

Proof. Recall that any integer can be represented as the difference c − d of two
nonnegative c, d ∈ ℕ. To show that the map above is well defined, we prove that
pc−d x

y
= pe−f x

y
for all nonnegative c, d, e, f ∈ ℤ such that c − d = e − f and all

x, y ∈ ℤp with sequences of coset representatives
(

an
)

n∈ℕ and
(

bn
)

n∈ℕ (it is also

the case that pe−f x
′

y′
= pe−f x

y
if x

′

y′
= x

y
). Note that pc−d x

y
=

(

pcan (mod pn)
)

n∈ℕ
(

pdbn (mod pn)
)

n∈ℕ

and

pe−f x
y
=

(

pean (mod pn)
)

n∈ℕ
(

pf bn (mod pn)
)

n∈ℕ

. By definition of a formal fraction, it suffices to show that
(

pcan (mod pn)
)

n∈ℕ
(

pfbn (mod pn)
)

n∈ℕ =
(

pdbn (mod pn)
)

n∈ℕ
(

pean (mod pn)
)

n∈ℕ.
By componentwise multiplication we calculate

(

pc+fanbn (mod pn)
)

n∈ℕ on the left
side and

(

pd+eanbn (mod pn)
)

n∈ℕ on the right side. Since c + f = d + e, these
expressions are equal.

The identity 0 of the additive group ℤ is an identity for ℤ acting on ℚp because

p0 x
y
=

(

p0an (mod pn)
)

n∈ℕ
(

p0an (mod pn)
)

n∈ℕ

=
(

an (mod pn)
)

n∈ℕ
(

bn (mod pn)
)

n∈ℕ

= x
y
for arbitrary x

y
∈ ℚp. We now calcu-

late pc−d(pe−f x
y
) = pc−d

(

pean (mod pn)
)

n∈ℕ
(

pf bn (mod pn)
)

n∈ℕ

=
(

pcpean (mod pn)
)

n∈ℕ
(

pdpf bn (mod pn)
)

n∈ℕ

=
(

pc+ean (mod pn)
)

n∈ℕ
(

pd+f an (mod pn)
)

n∈ℕ

=

p(c+e)−(d+f ) x
y
= pc−dpe−f x

y
. Therefore, we have defined an action of ℤ on ℚp. �
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Lemma. Any nonzero p-adic integer x =
(

xn
)

n∈ℕ can be written as pl� for some
l ∈ ℕ and any � ∈ ℤ×

p .

Proof. Recall from the proof of Cor. 2.8 that there must be some greatest power pk

of p which divides a component of x, otherwise arbitrarily large components of x
would be zero, which would entail that x itself is 0. Rewrite x as pk� where [�n]
is given by [xn]∕pe and pe is the largest power of p which divides [xn]. Since all
components of � are divisible by p, their coset representatives are relatively prime
to pn and therefore they are elements of the units ℤ∕pnℤ. Since all components of
� are therefore invertible, � ∈ ℤ×

p . �

Corollary 3.2. Any x
y
∈ ℚp can be written as pe �

�
for some e ∈ ℤ and p-adic

integers �, � ∈ ℤ×
p .

Proof. For some m ∈ ℕ and n ∈ ℕ, x = pm� and y = pn�, so x
y
= pm−n �

�
. �

Proposition 3.3. The combined orbit of ℤ acting on ℚp of the elements of the sub-
ring ℤ×

p ⊂ ℚp is the entire multiplicative group of the field ℚp.

Proof. Without loss of generality, let pe x
y
with x, y ∈ ℤ×

p and e ∈ ℤ denote an
arbitrary element of ℚp. Writing u = xy−1 ∈ ℤ×

p , it is clearly the case that peuy =
pex. Therefore, pe x

y
= peu, which is sufficient to prove the proposition. �

Remark 3.4. The exponent e in the decomposition of a p-adic number into the form
peu for u ∈ ℤp defines a valuation on the p-adics [3, p. 12]. Refer to Koblitz [2] for
analytic applications of the p-adics which make use of this valuation.

Proposition 3.5. The multiplicative group ℚ×
p is isomorphic to ℤ × ℤ×

p .

Proof. By the action ofℤ onℚp, each pair
(

e, u
)

∈ ℤ×ℤ×
p defines a p-adic integer

peu. Likewise, since each nonzero element of the p-adic field ℚp can be written as
peu for some pair

(

e, u
)

∈ ℤ × ℤ×
p , each p-adic integer defines a tuple in ℤ × ℤ×

p .
Therefore, the map ' ∶

(

e, u
)

↦ peu is bijective. Moreover, for any pairs
(

e1, u
)

and
(

e2, v
)

∈ ℤ×ℤ×
p ,'(

(

e1, u
)(

e2, v
)

) = pe1upe2v =
(

(pe1 (mod pn))un(pe2 (mod pn))vn
)

n∈ℕ =
(

(pe1 (mod pn))(pe2 (mod pn))unvn
)

n∈ℕ =
(

(pe1+e2 (mod pn))unvn
)

n∈ℕ = pe1+e2uv =
'(
(

e1+ e2, uv
)

). Therefore, since ' ∶ ℤ×ℤ×
p → ℚp is a bijective homomorphism,

ℤ × ℤ×
p ≃ ℚp. �

Serre [3] proves further isomorphisms of ℤ×
p which we quote below without

much discussion.

Definition 3.6. Let the component homomorphism "n ∶ ℤ×
p → ℤ∕pnℤ denote the

map given
(

xj
)

j∈ℕ ↦ xn.
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Remark 3.7. "n defines a homomorphism since for any two x =
(

xj
)

j∈ℕ, y =
(

yj
)

j∈ℕ ∈ ℤ×
p , "n(xy) = "n(

(

xjyj
)

j∈ℕ) = xnyn = "n(x)"n(y). Note that "n is
surjective since for any ā ∈ ℤ∕pnℤ, "n(

(

[ā] (mod pn)
)

n∈ℕ) = ā.

Proposition 3.8. ℤ×
p ≃ ker "1 × V for some V ≤ ℤ×

p .

Proof. (Sketch) By the Correspondence Theorem, there is a bijection between the
subgroups of ℤ×

p which contain ker "1 and the subgroups of ℤ×
p∕ ker "1 ≃ im "1 =

ℤ∕pℤ. However, since p is prime, the only subgroups of ℤ×
p∕ ker "1 are trivial,

which means the only subgroups of ℤp which contain ker "1 are {
(

1
)

n∈ℕ} and
ker "1. Note that the set of all units of ℤp which are not in ker "1 also form a
subgroup ofℤp (asserted without proof). Therefore, ker "1∩V =

{(

1
)

n∈ℕ
}

where
V = ℤ×

p − ker "1, and V (ker "1) = ℤ×
p as ker "1 ∪ V = ℤ×

p . Both are also normal
in ℤ×

p , so ℤ
×
p ≃ ker "1 × V . �
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